首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   561篇
  免费   38篇
  国内免费   33篇
测绘学   19篇
大气科学   51篇
地球物理   162篇
地质学   273篇
海洋学   41篇
天文学   57篇
综合类   2篇
自然地理   27篇
  2022年   4篇
  2021年   10篇
  2020年   12篇
  2019年   11篇
  2018年   13篇
  2017年   12篇
  2016年   23篇
  2015年   25篇
  2014年   27篇
  2013年   52篇
  2012年   28篇
  2011年   27篇
  2010年   21篇
  2009年   35篇
  2008年   24篇
  2007年   38篇
  2006年   22篇
  2005年   17篇
  2004年   11篇
  2003年   11篇
  2002年   17篇
  2001年   16篇
  2000年   4篇
  1999年   8篇
  1998年   10篇
  1997年   14篇
  1996年   10篇
  1995年   8篇
  1994年   11篇
  1993年   6篇
  1992年   4篇
  1991年   7篇
  1990年   6篇
  1989年   7篇
  1988年   5篇
  1987年   3篇
  1984年   6篇
  1983年   4篇
  1981年   3篇
  1979年   3篇
  1977年   5篇
  1974年   4篇
  1968年   2篇
  1965年   2篇
  1934年   2篇
  1933年   4篇
  1927年   3篇
  1926年   7篇
  1925年   2篇
  1924年   6篇
排序方式: 共有632条查询结果,搜索用时 15 毫秒
81.
82.
Results from forward modelling of garnet growth and U–Th–Pb chemical dating suggest three periods of metamorphism that affected metapelitic rocks of the Rappold Complex (Eastern European Alps). Garnet first grew during Barrovian-type metamorphism, possibly during the Carboniferous Variscan orogeny. The second period of metamorphism produced monazite and resulted in minor garnet growth in some samples. Variable garnet growth was controlled by changes to the effective bulk rock composition resulting from resorption of older garnet porphyroblasts. Monazite crystals have variable morphology, textures and composition, but all yield Permian ages (267 ± 12 to 274 ± 17 Ma). In samples in which there was Permian garnet growth, monazite forms isolated and randomly distributed grains. In other samples, monazite formed pseudomorphous clusters after allanite. This difference is attributed to higher transport rates of monazite-forming elements in samples which underwent dehydration reactions during renewed garnet growth. The third and final period of garnet growth took place during Eo-Alpine (Cretaceous) metamorphism. Garnet of this age displays a wart-like texture. This may reflect transport-limited growth, possibly as a result of repeated dehydration during polyphase metamorphism.  相似文献   
83.
Oman blueschists and eclogites lie below the obduction nappe of the Semail ophiolite in one of the key areas on Earth for the study of plate convergence. Here new metamorphic and tectonic constraints are provided for the central, yet poorly constrained Hulw unit, sandwiched between the low‐grade units (~10 kbar, <300 °C) and the As Sifah eclogites (Pmax ~ 23 kbar; Tmax ~ 600 °C). TWEEQU multi‐equilibrium thermobarometry, using both compositional mapping and spot analyses, and Raman spectroscopy of carbonaceous material yield a high‐precision P–T path for the Hulw and As Sheikh units and reveal that they shared a common P–T history in four stages: (i) a pressure decrease from 10–12 kbar, 250–300 °C to 7–9 kbar, 300–350 °C; (ii) almost isobaric heating at ~8–10 kbar from 300–350 °C to 450–500 °C; (iii) a pressure decrease at moderate temperatures (~450–500 °C); and (iv) isobaric cooling at ~5–6 kbar from 450–500 to 300 °C. No significant pressure or temperature gap is observed across the upper plate–lower plate discontinuity to the north and west of the Hulw unit. The combination of tectonic and P–T data constrains the stacking chronology of the three main metamorphic units comprising the Saih Hatat window (i.e. the Ruwi‐Quryat, the Hulw‐As Sheikh and the Diqdah‐As Sifah units). These results strengthen the view that the tectonic and metamorphic data are conveniently accounted for by a simple, N‐vergent continental subduction of the passive Arabian margin below the obduction nappe along a cold P–T gradient.  相似文献   
84.
85.
86.
87.
The paper describes the design and the realization of a multiple-function photoelectric photometer made by Trieste Observatory for Torino Observatory. The system design shows a two-beam, sequential multiband photon counting and analog photoelectric photometer configuration based on a PDP8/E computer for the control and data acquisition and elaboration. The actual realization of the system and the use of it in the one-beam configuration operating now at torino Observatory shows the advantages of such a solution and the easiness in modifying and determining the system functions by software programs rather than by hardware specials. Work supported by Consiglio Nazionale delle Ricerche, Gruppo Nazionale di Astronomia, Settore Tecnologie Astronomiche. The realization of the machine was fully supported by Torino Observatory. Trieste Observatory-Instruments and Data Processing Group (5/76).  相似文献   
88.
We examine the meteorological conditions favourable for new particle formation as a contribution to clarifying the responsible processes. Synoptic weather maps and satellite images over Southern Finland for 2003–2005 were examined, focusing mainly on air mass types, atmospheric frontal passages, and cloudiness. Arctic air masses are most favourable for new aerosol particle formation in the boreal forest. New particle formation tends to occur on days after passage of a cold front and on days without frontal passages. Cloudiness, often associated with frontal passages, decreases the amount of solar radiation, reducing the growth of new particles. When cloud cover exceeds 3–4 octas, particle formation proceeds at a slower rate or does not occur at all. During 2003–2005, the conditions that favour particle formation at Hyytiälä (Arctic air mass, post-cold-frontal passage or no frontal passage and cloudiness less than 3–4 octas) occur on 198 d. On 105 (57%) of those days, new particle formation occurred, indicating that these meteorological conditions alone can favour, but are not sufficient for, new particle formation and growth. In contrast, 53 d (28%) were classified as undefined days; 30 d (15%) were non-event days, where no evidence of increasing particle concentration and growth has been noticed.  相似文献   
89.
Abstract– We used a combination of different analytical techniques to study particle W7190‐D12 using microinfrared spectroscopy, micro‐Raman spectroscopy, and field emission scanning electron microscopy (FESEM) energy dispersive X‐ray spectroscopy (EDS). The particle consists mainly of hematite (α‐Fe2O3) with considerable variations in structural disorder. It further contains amorphous (Na,K)‐bearing Ca,Al‐silicate and organic carbon. Iron‐bearing spherules (<150 nm in diameter) cover the surface of this particle. At local sites of structural disorder at the hematite surface, the hematite spheres were reduced to FeO in the presence of organic carbons forming FeO‐spheres. However, metallic Fe spheres cannot be excluded based on the available data. To the best of our knowledge, this particle is the first detection of such spherules at the surface of a stratospheric dust particle. Although there is no definitive evidence for an extraterrestrial origin of particle W7190‐D12, we suggest that it could be an IDP that had moved away from the asteroid‐forming region of the early solar system into the outer solar system of the accreting Kuiper Belt objects. After it was released from a Jupiter family comet, this particle became part of the zodiacal cloud. Atmospheric entry flash‐heating caused (1) the formation of microenvironments of reduced iron oxide when indigenous carbon materials reacted with hematite covering its surface resulting in the formation of FeO‐spheres and (2) Na‐loss from Na,Al‐plagioclase. The particle of this study, and other similar particles on this collector, may represent a potentially new type of nonchondritic IDPs associated with Jupiter family comets, although an origin in the asteroid belt cannot be ignored.  相似文献   
90.
Abstract— The 40 km wide Araguainha structure in central Brazil is a shallowly eroded impact crater that presents unique insights into the final stages of complex crater formation. The dominant structural features preserved at Araguainha relate directly to the centripetal movement of the target rocks during the collapse of the transient cavity. Slumping of the transient cavity walls resulted in inward‐verging inclined folds and a km‐scale anticline in the outer ring of the structure. The folding stage was followed by radial and concentric faulting, with downward displacement of kilometer‐scale blocks around the crater rim. The central uplift records evidence for km‐scale upward movement of crystalline basement rocks from the transient cavity floor, and lateral moment of sedimentary target rocks detached from the cavity walls. Much of the structural grain in the central uplift relates to structural stacking of km‐scale thrust sheets of sedimentary strata onto the core of crystalline basement rocks. Outward‐plunging radial folds indicate tangential oblate shortening of the strata during the imbrication of the thrust sheets. Each individual sheet records an early stage of folding and thickening due to non‐coaxial strains, shortly before sheet imbrication. We attribute this folding and thickening phase to the kilometer‐scale inward movement of the target strata from the transient cavity walls to the central uplift. The outer parts of the central uplift record additional outward movement of the target rocks, possibly related to the collapse of the central uplift. An inner ring structure at 10–12 km from the crater center marks the extent of the deformation related to the outward movement of the target rocks.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号